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Abstract—

As a new social issue, crop output prediction is a challenge that modern farmers must deal with. Focusing on two Artificial
Intelligence (AI) models and their comparative analysis, this article aims to improve crop production prediction for famous
wheat varieties. In order to forecast the wheat harvest, this article compares two Al algorithms. Estimating agricultural yields is a
challenging task for farmers. The crofters will be able to anticipate the wheat crop production with the aid of our initiative. A
loss of 11.1782 is produced by the artificial neural network, whereas a random forest approach yields a score of 0.999R2. The
random forest technique outperforms the artificial neural network when it comes to forecasting.
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1. INTRODUCTION

The agricultural industry is crucial on a global scale.
Agriculture is a multi-crop system. The three primary crops
grown across the globe are maize, wheat, and rice. Some
reasons, such as the extensive usage of pesticides, climate
changes, unseasonable rainfall, etc., have diminished
agriculture's prominence in modern times. People rely on
agriculture as a foundation. One of the most widely cultivated
crops worldwide is wheat. When it comes to wheat
production, China is unrivaled. There will be 133,590 metric
tons of wheat produced in China this year. Estimates for 2019
put global wheat output at 609,747 metric tons. In 89 different
nations, 2.5 billion people consume wheat. The main goal of
this study is to predict the future wheat crop production using
historical data. The demand for food is growing at a quick
pace these days due to the expanding population. Wheat yield
information could be useful for farmers when tracking crop
productivity. Although the land will remain the same, the
people will grow in the days to come. There will be less food
shortages in the future as crop yields improve. We are using
machine learning and deep learning methods to do regression
analysis in our project. A combination of an artificial neural
network and a random forest algorithm was used to forecast
the wheat harvest. Our models were fed winter wheat data.

IL Methodology

In order to forecast the wheat harvest, the suggested
techniques include random forest and artificial neural
networks. While comparing the outcomes of equally effective
ANNSs RF (random forest) and... We have been given seven
aspects of winter wheat crop data as input data. In the end, we
get an accurate yield prediction from our regression models.
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IIL Random Forest
Regression

As a supervised learning method, Random Forest takes
training data in two forms: input and output combinations.
Both regression and classification tasks are handled by a
random forest method. It's a method for bagging.

Random jforest = Decision tress + row sampling with
replacement + calummn sampling + aggraegation.

Decision trees are prone to overfitting as the depth grows. We
have used decision trees as base learners in random forest,
however there is no suitable depth for these trees. The training
process becomes much easier with a big dataset that has a
decent quantity of features. Reducing the model's variance is
the primary benefit of the random forest. Categorical
characteristics with several categories will not be well-suited
for random forest. We developed a random forest system to
forecast wheat harvest yield in our experiment. Ten decision
trees have been used as first learners. The final result is the
weighted average of all the predictions made by the base
learners.

1v.Model Design for Random
Forest
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a) R2 Score: It is the ratio of explained variation in y to
the total variation in y.

a) HYPERPARAMETERS: The number of base
learners (decision trees) is an important hyper
parameter in a random forest. We are used ten
estimators (base learners or decision trees) in our
model.
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v. ARTIFICIAL NEURAL
NETWORK

A neural network is another name for an artificial neural
network, or ANN. Brain networks were the primary source of
inspiration. For our regression challenge, we used an ANN,
which accepts input data and processes it to produce output.
For ANNs (artificial neural networks) to be able to forecast
output. It performs well when the training data is substantial;
otherwise, it fails miserably. For this specific issue, we are
modeled as a neural network for the purpose of regression
analysis. With the same number of neurons as input qualities,
this basic model contains two completely linked hidden layers.
As an activation function for buried layers, we are using
reluas. For the output layer, no activation was applied. An
optimization approach called SGD was used.

vi. Model Design for the Artificial
Neural Network
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Output Laver

Fig.3. Architectureforpredictionofcropyieldusingneuralnetwor
k.

Scatter Gradient Descent (SGD) It quickly determines the
update by calculating the derivative from each training set. B.
Loss Function a) Mean Squared Error (MSE): It's a tool for
regression analysis. Finding the average of the squared
difference between the expected and actual values is what it is.
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A. Metrics:
MAE (Mean absolute error): 1t is used for regression. it is
the mean of the absolute difference between the actual
values and predicted values.
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b) Mean Squared Logarithmic Error (MSLE): This is the
percentage difference between the actual and projected values.
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¢) MAPE (mean absolute percentage error): MAPE is
abbreviated as MAPD. By dividing the actual value by the
anticipated value, we can get the variance between the two.
Each anticipated point in time has its absolute value added to
it, then divided by the number of fitted points (n), and finally
multiplied by 100.
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d) Hyperparameters: A crucial hyperparameter in neural
networks is the Hidden layer. In our model, we have used a
mere two hidden layers. 500 was the epoch value chosen.

VIL IMPLEMENTATION

The data will be divided as follows: 70% for training, 10% for
validation, and 20% for testing. Both a random forest
technique and an artificial neural network were used to
address the situation at hand. The random forest method takes
22 seconds to train, and we have utilized the R2 score as a
statistic. We used relu as the activation function in our
artificial neural network, with mean squared error as the loss
function and SGD as the optimization algorithm. It takes about
25 minutes to train the neural network model. 500 was the
epoch value chosen.

VIIL. DATA

The data was retrieved from Github. The collection includes
wheat crop statistics from many US countries. Every day, they
are supplying the winter heat data. The values in the dataset
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are separated by commas. The data set has 182549 rows and
26 columns, representing the number of characteristics. We
have not used all of the columns in our model in our
experiment. We have employed seven characteristics and
removed certain columns from our data file based on their
relevance. Our model uses the following seven characteristics
as input (x) and output (y) in its wheat crop prediction:
latitude, longitude, apparent temperature maximum, apparent
temperature minimum, temperature maximum, temperature
minimum, and humidity.

1x. DataPre-Processing

Due to the removal of some columns, not all of the columns in
the dataset have been used. In addition, we used the
minmaxscaler on the data. Using minmaxscaler, any outliers
in the data may be removed.

X.RESULTS

For this experiment, we employed two methods to forecast
wheat harvest yields: a random forest algorithm and an
artificial neural network. A loss of 11.1782 is produced by the
artificial neural network model, whereas an R2 score of
0.9999 is produced by the random forest technique. It takes 22
seconds to train the random forest algorithm. It takes 25
minutes (500 epochs) to train the ANN model.

A.RESULTFORRANDOMFORESTALGORITHM

Maodel Number of

hase learners

E lscoreon
test data

Fandom forest Ten 0000003236
alzonthm{uzed 2663
for regression)

Table 1. shows the results for wheat yield prediction using
random forestalgorithm.
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Fig4:Graphforpredictedvaluesandactualvaluesusingrandomfor
estalgorithm

B. Resultsfor ANN:
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Table 2. shows the results for wheat yield prediction using
artificial neuralnetwork.

Mod | Num | metric( Metric | Vali | Validat
el berof | Mean (Mean | datio | onfor
hidde | sguare absolu | n metric(
n logarith | te (Mea | Mean
layer | mic percen | m absolut
5 error) tage squa | €
error) | re percent
logar | age
ithm | error)
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r)
ANN | Two 00127 | 82961 | 0.01 03020
27

Table3.showstheresultsforwheatyieldpredictionusingartificial
neuralnetwork by taking different performance metrics.

C. Graphs:
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Fig6.Graphformeansquareerror(loss):
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XI.Conclusion

The outcomes of the two methods are being
compared. The methods used include artificial neural
networks and random forest regression. Both are
functioning well. A.N. networks aren't very effective,
but the Random forest method is. However, many
farmers still struggle with finding reliable methods
for estimating crop yields. The most accurate
forecasting of wheat output is something that this
study will assist farmers with.
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